Aquaporin 4 as a NH3 Channel.

نویسندگان

  • Mette Assentoft
  • Shreyas Kaptan
  • Hans-Peter Schneider
  • Joachim W Deitmer
  • Bert L de Groot
  • Nanna MacAulay
چکیده

Ammonia is a biologically potent molecule, and the regulation of ammonia levels in the mammalian body is, therefore, strictly controlled. The molecular paths of ammonia permeation across plasma membranes remain ill-defined, but the structural similarity of water and NH3 has pointed to the aquaporins as putative NH3-permeable pores. Accordingly, a range of aquaporins from mammals, plants, fungi, and protozoans demonstrates ammonia permeability. Aquaporin 4 (AQP4) is highly expressed at perivascular glia end-feet in the mammalian brain and may, with this prominent localization at the blood-brain-interface, participate in the exchange of ammonia, which is required to sustain the glutamate-glutamine cycle. Here we observe that AQP4-expressing Xenopus oocytes display a reflection coefficient <1 for NH4Cl at pH 8.0, at which pH an increased amount of the ammonia occurs in the form of NH3 Taken together with an NH4Cl-mediated intracellular alkalization (or lesser acidification) of AQP4-expressing oocytes, these data suggest that NH3 is able to permeate the pore of AQP4. Exposure to NH4Cl increased the membrane currents to a similar extent in uninjected oocytes and in oocytes expressing AQP4, indicating that the ionic NH4 (+) did not permeate AQP4. Molecular dynamics simulations revealed partial pore permeation events of NH3 but not of NH4 (+) and a reduced energy barrier for NH3 permeation through AQP4 compared with that of a cholesterol-containing lipid bilayer, suggesting AQP4 as a favored transmembrane route for NH3 Our data propose that AQP4 belongs to the growing list of NH3-permeable water channels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transport of NH 3 / NH 4 1 in oocytes expressing aquaporin - 1

Nakhoul, Nazih L., Kathleen S. Hering-Smith, Solange M. Abdulnour-Nakhoul, and L. Lee Hamm. Transport of NH3/NH4 1 in oocytes expressing aquaporin-1. Am J Physiol Renal Physiol 281: F255–F263, 2001.—The aim of this study was to determine whether expressing aquaporin (AQP)-1 could affect transport of NH3. Using ion-selective microelectrodes, the experiments were conducted on frog oocytes (cells ...

متن کامل

Molecular Dynamics Simulation of Water Transportation through Aquaporin-4 in Rat Brain Cells

This paper investigates the mechanism of water transportation through aquaporin-4(AQP4) of ratbrain cells by means of molecular dynamics simulation with CHARMM software. The AQP4 wasembedded into a bilayer made of Dimystroilphosphatylcholine (DMPC). The results illustrate thatwater molecules move through AQP4's channel with change of orientation of oxygen of eachwater molecule.

متن کامل

Aquaporin-4: A Potential Therapeutic Target for Cerebral Edema

Aquaporin-4 (AQP4) is a family member of water-channel proteins and is dominantly expressed in the foot process of glial cells surrounding capillaries. The predominant expression at the boundaries between cerebral parenchyma and major fluid compartments suggests the function of aquaporin-4 in water transfer into and out of the brain parenchyma. Accumulating evidences have suggested that the dys...

متن کامل

The Neuroepithelium Disruption Could Generate Autoantibodies against AQP4 and Cause Neuromyelitis Optica and Hydrocephalus

Neuromyelitis optica is an inflammatory disease characterized by neuritis and myelitis of the optic nerve. Its physiopathology is connected with the aquaporin-4 water channel, since antibodies against aquaporin-4 have been found in the cerebrospinal fluid and blood of neuromyelitis optica patients. The seropositivity for aquaporin-4 antibodies is used for the diagnosis of neuromyelitis optica o...

متن کامل

Two-dimensional crystal structure of aquaporin-4 bound to the inhibitor acetazolamide

Acetazolamide (AZA) reduces the water permeability of aquaporin-4, the predominant water channel in the brain. We determined the structure of aquaporin-4 in the presence of AZA using electron crystallography. Most of the features of the 5-Å density map were consistent with those of the previously determined atomic model. The map showed a protruding density from near the extracellular pore entra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 291 36  شماره 

صفحات  -

تاریخ انتشار 2016